Индикатор максимумов и минимумов, находим рыночные экстремумы

2 лучших брокера бинарных опционов за 2020 год:
  • Бинариум
    Бинариум

    1 место! Самый старый и надежный брокер бинарных опционов. Бонусы за открытие счета! Лучший вариант для начинающих трейдеров.

  • ФинМакс
    ФинМакс

    У этого брокера больше всего торговых инструментов. Подходит для опытных трейдеров.

Экстремумы на Форекс — определяем и применяем в торговле экстремумы

Что такое экстремумы, вероятно, наш читатель помнит еще с уроков математики в школе. На валютном рынке, как ни странно, то же частенько встречается это понятие, особенно среди тех, кто использует в своей торговле ценовые уровни. Определяя экстремумы на Форекс, мы облегчаем себе задачу при графическом определении уровней.

Рассмотрим подробнее, как именно выглядят экстремумы на ценовом графике, как их можно объективно определять и для чего именно они могут нам пригодиться. Тема довольно простая, особенно, если воспользоваться одним из вспомогательных индикаторов.

На иллюстрации ниже изображена обыкновенная рыночная ситуация. На графике индикатор ZigZag помогает нам определить экстремумы, которые еще принято называть локальными максимумами и минимумами.

Можно, конечно, визуально определить места расположения экстремумов, но в процессе работы будут появляться сложные ситуации, когда не получается сразу сказать, то ли перед нами локальный максимум, то ли это просто боковое колебание, немного выбившееся по величине. Посмотрите на пример, который расположен ниже, там как раз изображен такой случай.

Рекомендую обратить внимание вот на эти торговые системы:

Именно для объективной оценки каждой ситуации на рынке, для поиска локальных максимумов и минимумов применяются индикаторы, например, ZigZag, который есть в стандартном наборе терминала MetaTrader 4. Следует помнить, что до тех пор, пока индикатор не сформирует угол, последняя прямая может менять свои значения. Как только угол сформирован, он уже не будет перерисовываться на графике.

Применение экстремумов на Форекс

Экстремумы на ценовых графиках это точки разворота рынка. Фактически, это значения рыночных цен, по которым перевес продавцов сменялся доминированием покупателей и ровно наоборот. Получается, что через локальные точки можно проводить ценовые уровни, определяя для себя области скопления объемов.

Такие построения не редко используются в торговых системах, иногда для наглядности, а иногда и для поиска точки входа в рынок, когда человек стремится заключить сделку на пробой важного уровня. Чтобы не определять все значимые уровни «на глаз», трейдер прибегает к использованию индикаторов, как ZigZag.

Экстремумы — крайние цены на графике, которые изменили локальную рыночную тенденцию. Естественно, что на Форекс можно обнаружить два типа таких точек разворота — локальные минимумы, и локальные максимумы.

Для чего нужно сопровождать открытие позиции на рынке Форекс?

Рейтинг лучших брокеров БО на русском языке:
  • Бинариум
    Бинариум

    1 место! Самый старый и надежный брокер бинарных опционов. Бонусы за открытие счета! Лучший вариант для начинающих трейдеров.

  • ФинМакс
    ФинМакс

    У этого брокера больше всего торговых инструментов. Подходит для опытных трейдеров.

Полное описание перестановки ордера в безубыток и бесплатный советник безубыток для скачивания.

Полное описание трейлинг стоп и несколько советников.

© 2020 RATINGS Forex, Все права защищены

Экстремумы функций двух и трёх переменных

Поздравляю всех читателей сайта с большим событием – после кропотливой и технически сложной разработки темы функций нескольких переменных, наконец-то появилась на свет эта долгожданная статья! Сегодня на уроке мы научимся находить максимумы и минимумы функций двух и трёх переменных, а также обобщим алгоритм решения данной задачи на случай бОльшего количества аргументов. С понятиями точек экстремума и экстремумов вы уже знакомы из статьи об экстремумах функции одной переменной, и для «старших сестёр» эти понятия имеют родственный смысл. Освежим в памяти элементарную терминологию:

точки экстремума – это общее название точек минимума и максимума;
экстремумы – это общее название минимумов и максимумов.

Начнём с функции двух переменных , применительно к которой точки экстремума – это точки плоскости , а экстремумы – соответствующие значения функции («высоты»). Также экстремумами иногда называют точки самой поверхности.

Да, и сразу важное напутствие для «чайников», нормальных студентов =) и сомневающихся – рассматриваемый материал сам по себе прост, но требует базовых знаний и навыков в нескольких разделах высшей математики. Поэтому если у вас возникнет (или уже возникло) какое-либо недопонимание по ходу изложения, то проставленные ссылки в помощь.

Итак, «действующие лица» следующие: функция , внутренняя точка её области определения и -окрестность данной точки. Для удобства считаем, что окрестность представляет собой круг радиуса с центром в точке (в учебной литературе чаще встречается окрестность-квадрат).

Определение: если в некоторой -окрестности точки выполнено неравенство , то говорят, что функция имеет минимум в точке .

При этом точка называется точкой минимума, а соответствующее значение функции («высота») – минимумом. Ещё раз призываю не путаться в терминах!

Простейший пример минимума – это вершина эллиптического параболоида, чаша которого направлена вверх:

Давайте ещё раз внимательно перечитаем определение и вдумаемся в его суть. Сформулированное определение говорит нам о том, что функция достигает минимума в точке , если существует хоть какая-то -окрестность этой точки, в которой значение высоты меньше ВСЕХ ОСТАЛЬНЫХ значений .

Следует отметить, что в нашем примере под определение подходит вообще любая -окрестность, т.к. поверхность уходит вверх на бесконечность и никаких точек ниже – нет в принципе. Такой минимум называют глобальным.

А теперь мысленно разверните чашу параболоида вниз – чтобы красная точка стала «вершиной горы».

Определение: если в некоторой -окрестности точки выполнено неравенство , то говорят, что функция имеет максимум в точке .

Соответственно, точка называется точкой максимума, а значение – максимумом функции.

В случае с нашим параболоидом максимум, естественно, тоже глобальный, но на практике гораздо чаще встречаются локальные экстремумы. Так, например, функция на нижеследующем чертеже достигает локального максимума (слева вверху) и локального минимума (справа внизу):

Наверное, всем понятно, в чём различие, но всё-таки закомментирую: почему, например, такой максимум называют локальным? Потому что функция на своей области определения достигает и бОльших значений – по правую руку поверхность уходит «за облака», где о красной точке разве что легенды слагают. Таким образом, о «вершине горы» речь идёт лишь на локальном участке области определения. «Гора», кстати, «горЕ» рознь – бывают поверхности, у которых минимумы и максимумы если и различимы на глаз, то выглядят, как пупырышки =) Важно, чтобы существовала пусть даже очень малая -окрестность точки , где выполнено условие минимума или максимума (см. определения).

Из вышесказанного следует ещё одна важная вещь, которая опять же касается понятий. Пожалуйста, РАЗЛИЧАЙТЕ и будьте аккуратны в выражениях:

максимум функции – это в общем случае НЕ ТО ЖЕ САМОЕ, что максимальное значение функции;

минимум функции – это в общем случае НЕ ТО ЖЕ САМОЕ, что минимальное значение функции.

Да, в примере с эллиптическим параболоидом соответствующие понятия совпадают, но вот у только что рассмотренной поверхности «красный» максимум – это отнюдь не наибольшее, а «оранжевый» минимум – отнюдь не наименьшее значение функции. Задачу нахождения минимального и максимального значений функции мы рассмотрим в самом ближайшем будущем, а пока что вернёмся к теме сегодняшнего урока:

Как исследовать функцию на экстремум?

Прежде всего, нужно ориентироваться на необходимое условие экстремума:

если дифференцируемая функция имеет экстремум в точке , то обе частные производные 1-го порядка в данной точке равны нулю:

Точку, удовлетворяющую этим условиям, называют критической, а чаще – стационарной точкой.

! Примечание: условие необходимо именно для дифференцируемой в точке функции. Как мы увидим в Примере 6, экстремум может существовать и при других обстоятельствах.

Обратное утверждение справедливо далеко не всегда. Иными словами, если известно, что в некоторой точке частные производные равны нулю, то это ЕЩЁ НЕ ЗНАЧИТ, что там есть экстремум. Его там может и не быть.

Так, например, у функции , которая как раз задаёт эллиптический параболоид, частные производные обращаются в ноль в точке – и в данной точке действительно существует минимум функции («дно чаши»).

Но у функции с производными , равными нулю в этой же точке, не наблюдается ничего подобного. Это гиперболический параболоид или «седло»:

Для точки не существует -окрестности, в которой поверхность располагалась бы только вверху или только внизу . Грубо говоря, в любой -окрестности точки куски поверхности есть и сверху, и снизу.

Точку такого рода так и называют – седловой, а иногда, по известной географической ассоциации – точкой перевала.

Читатели, знакомые с материалами статьи Производная по направлению и градиент, наверное, уже поняли геометрический смысл выкладок: из условий
следует равенство нулю производной и по всем направлениям: . То есть, если мы сделаем бесконечно малый «шажок» из точки в любую сторону, то наша высота останется неизменной. И этот факт справедлив, как для точек экстремума, так и для точки перевала.

Итак, условия необходимы для существования экстремума дифференцируемой там функции, но на основании только этой информации мы ещё не можем сделать вывода о характере точки . С достаточным условием экстремума познакомимся прямо по ходу практической задачи, а то что-то мы засиделись в теории:

Исследовать на экстремум функцию

Решение: на первом шаге нужно отыскать стационарные точки. Для этого найдём частные производные 1-го порядка:

и решим систему:

В данном случае получена система двух линейных уравнений с двумя неизвестными, которую можно решить несколькими способами. Но мудрить здесь не надо – как проще, так и решаем. Из 2-го уравнения выразим и подставим в 1-е уравнение:

– стационарная точка. Тут, главное, не перепутать координаты.

Выполним промежуточную проверку:

Отлично. А точнее, хорошо, поскольку пройдено всего лишь пол пути. В найденной точке может быть минимум, максимум либо перевал, и выяснить, что же там на самом деле, нам поможет

достаточное условие экстремума функции двух переменных,

для применения которого нужно вычислить частные производные 2-го порядка в точке Для компактности обычно используют следующие обозначения:

Если , то функция имеет экстремум в точке , причём, если , то это минимум, а если – то максимум.

Примечание: здесь также можно ориентироваться и на букву «цэ», т.к. неравенство выполняется только в том случае, если и – одного знака.

Если , то в точке нет экстремума.

Если же , то требуется дополнительное исследование, о котором загадочно умалчивают практически все источники. Впрочем, беспокоиться особо не нужно – встретите вряд ли.

В нашем примере все частные производные 2-го порядка равны константам:

а значит, соответствующим константам они равны и в частности в точке :

Таким образом: , следовательно, в точке есть экстремум, и так как , то это – минимум. Осталось его найти. Перепишем функцию , чтобы она была перед глазами, и ОЧЕНЬ внимательно проведём вычисления:

Надо сказать, момент весьма неприятный, поскольку здесь существует ненулевая вероятность запороть всё задание. Правда, в данном случае вычисления здОрово облегчил нулевой «икс».

Ответ:

Признаюсь честно, привык я использовать значки , что не есть хорошо, т.к. они обычно используется для обозначения минимального и максимального значений функции. От чего вас и предостерегаю.

И справка для любознательных: поверхность представляет собой не что иное, как «подзашифорованный» эллиптический параболоид – весьма похожий на тот, который мы видели на 1-й картинке урока.

Пара разминочных примеров для самостоятельного решения:

Исследовать на экстремум функцию двух переменных

Исследовать на экстремум функцию двух переменных

Решение 3-го примера осложняется тем, что получается система нелинейных уравнений. Подумайте, что и откуда выгоднее выразить. Примерный образец чистового оформления задач в конце урока.

Когда я подбирал материалы к этой статье, то обнаружил у себя целую тьму подобных примеров (даже сам удивился) и поэтому рекомендую со всей ответственностью отнестись к предлагаемым заданиям.

Нередко приходится разбираться с двумя или даже бОльшим количествам стационарных точек. Типовая задача с экспонентой:

Исследовать функцию на экстремум

Решение: чтобы определить стационарные точки, найдем частные производные 1-го порядка и приравняем их к нулю. Техническая сложность дифференцирования состоит в применении правила , после чего, руководствуясь здравой логикой, нужно «загонять» слагаемые в одну скобку и по необходимости «наводить там порядок»:

На всякий пожарный проверим, что (тем более, находить всё равно придётся):

Поскольку экспоненты не могут равняться нулю, то их можно с чистой совестью убрать:

В подобных системах нужно проявить смекалку: где-то удаётся удачно выразить одну переменную через другую, где-то можно выделить полный квадрат, ну а у нас решение лежит на поверхности:

Теперь подставляем соотношение в любое, например, во 2-е уравнение системы:

В результате получены 2 стационарные точки:

Не упущу возможности позанудствовать и напомнить о проверке – координаты найденных точек должны удовлетворять каждому уравнению системы.

Достаточное условие экстремума, как вы понимаете, нужно проверить для каждой точки отдельно. И в том, и в другом случае нам потребуются частные производные 2-го порядка:

Смешанная производная уже найдена:

И, наконец, «двойная игрековая»:

. Это ещё не самый страх – пример я подобрал довольно гуманный =)

На очереди кропотливые вычисления:

1) Проверим выполнение достаточного условия экстремума для точки :

, значит, в точке нет экстремума.

2) Проверим выполнение достаточного условия экстремума для точки :

, значит, в точке существует экстремум, и поскольку , то это – максимум. Вспоминаем про функцию и НЕ ОШИБАЕМСЯ:

Ответ:

О точке перевала в ответе не упоминаем. Зачем? Нас же просили провести исследование на экстремум.

От следующего задания тоже трудно отказаться – почти баян:

Исследовать функцию на экстремум

Краткое решение и ответ в конце урока

Время от времени посетители сайта просят меня включать в уроки задания и посложнее… ну что же, нашёлся тут интересный экземпляр: . Здесь придётся разрулить не самую простую систему и проверить на экстремум несколько стационарных точек. Чтобы не убивать интригу, в конце урока не будет ни решения, ни ответа =)

И специально для всех читателей mathprofi.ru, можно сказать, эксклюзивная задача:

Исследовать функцию на экстремум

Решение начинается как обычно:

Но вот следующий шаг, казалось бы, сразу приводит к ответу об отсутствии экстремумов:

Система не имеет решений, поскольку единственная «подозрительная» точка обращает знаменатели в ноль, то есть функция – не дифференцируема в данной точке. Но неужели всё так просто? И действительно – ведь САМА-ТО функция там определена:

И более того, поверхность непрерывна в точке (да и вообще в любой точке плоскости ). Так почему же тут не может существовать минимум или максимум?

Сомнения не напрасны! По аналогии с похожим «плоским» случаем (см. Пример 8 урока Возрастание, убывание и экстремумы функции) такая точка тоже считается стационарной и в ней тоже может быть экстремум!

Но здесь возникает второй камень преткновения. В знаменателях частных производных 2-го порядка (проверьте самостоятельно) находятся корни , что делает невозможным вычисление значений .

Как быть? В трудной ситуации всегда есть смысл проанализировать самое простое решение. А самое элементарное в экстремумах – это непосредственно их определения!

Рассмотрим достаточно малую -окрестность точки . Любую точку данной окрестности, отличную от , можно представить в виде , где значения не равны нулю одновременно и достаточно малы для того чтобы точка входила в эту окрестность.

Примечание: оба числа могут быть положительны , отрицательны , разных знаков: либо ; и, кроме того, одно из них может равняться нулю (ещё 4 случая). Таким образом, обозначение действительно пригодно.

Вычислим значение функции в этой произвольной точке окрестности:

Так как не равны нулю одновременно, то корень будет хоть чуть-чуть, но больше нуля, а значит, . И вспоминая, что , записываем очевидный факт: . Грубо говоря, в рассматриваемой окрестности значение «самое низкое».

Вывод: для точки нашлась -окрестность, в которой выполнено неравенство , таким образом, – минимум по определению.

Нетрудно понять, что минимум глобальный. Геометрически поверхность представляет собой своеобразное пространственное остриё, а точнее – «шип».

Ответ:

Представленное решение полностью корректно и полноценно! Более того, данный способ можно попытаться применить и в ситуации, когда достаточное условие экстремума не даёт ответа . Однако дело осложняется тем, что неравенство либо нужно обосновать для каждого из восьми случаев (см. Примечание), что реально осуществимо далеко не всегда. Зависит от функции.

И заключительный, не менее интересный параграф:

Экстремумы функции трёх переменных

Плюс одно измерение. Рассмотрим функцию трёх переменных , внутреннюю точку её области определения и -окрестность данной точки, которая представляет собой шар с центром в точке радиуса .

Определение: если в некоторой -окрестности точки выполнено неравенство ( – точка -шара, отличная от ), то функция имеет минимум в точке ; если же – то максимум.

Вполне, кстати, понятное и не такое уж абстрактное определение.

Всё очень похоже. Если дифференцируемая функция имеет экстремум в точке , то обязательно выполняются условия . Но с другой стороны, если в какой-либо точке производные 1-го порядка равны нулю, то это ещё не значит, что там есть экстремум.

Алгоритм решения сохраняется прежним:

Найти экстремумы функции

Решение: переключаем передачу на частные производные функции трёх переменных:

Чтобы найти стационарные точки, составим и решим следующую систему:

Аккуратно расположим переменные в обычном порядке и, кроме того, разделим последнее уравнение на 2:

Систему можно решить методом Гаусса, но зачем такие сложности? Из 3-го уравнения выразим и подставим его в первые два уравнения:

Из 1-го уравнения выразим и подставим во 2-е уравнение:

Таким образом, – стационарная точка. Здесь, напоминаю, не помешает подставить найденное решение в каждое уравнение исходной системы и убедиться в выполнении условий .

Проверка достаточного условия экстремума осуществляется несколько по-другому. Сначала нужно найти все частные производные 2-го порядка, вычислить их в точке и составить так называемую матрицу Гессе:

Да не пугайтесь вы так =) Данная матрица является симметричной (или симметрической). Это значит, что её элементы симметричны относительно главной диагонали, на которой в данном случае расположены «однобуквенные» частные производные . Уловили закономерность?

Далее нужно вычислить угловые миноры. Это определители, которые «разрастаются» из левого верхнего угла:

1) Если , то функция достигает минимума в точке .

2) Если (так и только так!), то функция достигает максимума в точке .

3) Если получилось что-то другое и при этом , то – седловая точка. Здесь это уже во многом условное название.

4) Если , то признак не даёт ответа о характере точки .

Внимательные читатели заметили, что эту схему в варианте «два на два» мы использовали и в предыдущем параграфе – только оформление «детское» было. Но не будем отвлекаться.

В нашем примере все производные 2-го порядка равны константам:

а значит, они равны константам и в точке . Составим матрицу Гессе:

и вычислим её угловые миноры:

Вывод: функция достигает максимума в точке .

Для удобства вычислений скопирую функцию:

Ответ:

Аналогичное задание для закрепления материала:

Исследовать функцию на экстремум

Краткое решение и ответ рядом.

Рассмотренный алгоритм исследования распространяется и на функции бОльшего количества переменных. Я бы мог расписать его в общем виде, но заметная часть аудитории просто на дух не переносит общие формулы с нагромождением цифр и индексов. Поэтому разберём ещё случай функции 4 переменных, а дальше – будет понятно.

Чтобы исследовать на экстремум дифференцируемую функцию четырёх аргументов, нужно найти частные производные 1-го порядка и решить систему:

Предположим, что в результате решения найдена стационарная точка . Далее нужно найти частные производные 2-го порядка, вычислить их в точке и составить матрицу Гессе:

после чего вычислить её угловые миноры .

Если все миноры положительны, то в точке – минимум, если знакочередуются в следующем порядке: (и именно в таком!), то в точке – максимум. Если имеет место другой случай, но , то – седловая точка; если же , то признак не даёт ответа о характере точки .

Ну и для совсем продвинутых читателей сообщу, что это есть не что иное, как проверка квадратичной формы полного дифференциала 2-го порядка на знакоопределённость методом Сильвестра (для функций 2, 3, 4 и бОльшего количества переменных).

Удачных вам исследований!

На следующих уроках мы познакомимся с условными экстремумами, задачей нахождения минимального и максимального значений функции, а также известнейшим приложением темы – Методом наименьших квадратов.

Как наберётесь сил – приходите ещё! =)

Решения и ответы:

Пример 2: Решение: найдём стационарные точки:

– стационарная точка.
Проверим выполнение достаточного условия экстремума:
, в частности:

, значит, в точке нет экстремума.
Ответ: экстремумы отсутствуют

Пример 3: Решение: найдём стационарные точки:

Из 1-го уравнения выразим: – подставим во 2-е уравнение:

– стационарная точка.
Проверим выполнение достаточного условия экстремума:

Таким образом:

, значит, в точке существует экстремум, так как , то это – максимум:

Ответ:

Пример 5: Решение: найдем частные производные 1-го порядка:

Составим и решим систему:

Из 2-го уравнения выразим – подставим в 1-е уравнение:

В результате получены 2 стационарные точки:

Проверим выполнение достаточного условия экстремума:

1) Для точки :

, значит, в точке нет экстремума.
2) Для точки :

, значит, в точке существует экстремум, и поскольку , то это минимум:

Ответ:

Пример 8: Решение: найдём стационарные точки:

Составим и решим систему:

Из 2-го уравнения выразим – подставим в 1-е и 3-е уравнения:

Из 2-го уравнения выразим – подставим в 1-е уравнение:

Таким образом:

– стационарная точка.
Найдём частные производные 2-го порядка:

Частные производные равны константами, а значит, они равны соответствующим константам и в точке . Составим матрицу Гессе:

и вычислим её угловые миноры:

Ответ: экстремумы отсутствуют

ТОП-2 лучших брокеров бинарных опционов, дающих бонусы при открытии счета:
  • Бинариум
    Бинариум

    1 место! Самый старый и надежный брокер бинарных опционов. Бонусы за открытие счета! Лучший вариант для начинающих трейдеров.

  • ФинМакс
    ФинМакс

    У этого брокера больше всего торговых инструментов. Подходит для опытных трейдеров.

Добавить комментарий